Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9
نویسندگان
چکیده
Notch signaling plays a critical role during development by directing the binary cell fate decision between progenitors and differentiated cells. Previous studies have shown sustained Notch activation in cartilage leads to chondrodysplasia. Genetic evidence indicates that Notch regulates limb bud mesenchymal stem cell differentiation into chondrocytes via an Rbpj-dependent Notch pathway. However, it is still unknown how Notch governs chondrogenesis in the axial skeleton where Notch serves a primary patterning function. We hypothesized that both Rbpj-dependent and Rbpj-independent Notch signaling mechanisms might be involved. Cartilage-specific Notch gain-of-function (GOF) mutant mice display chondrodysplasia accompanied by loss of Sox9 expression in vertebrae. To evaluate the contribution of an Rbpj-dependent Notch signaling to this phenotype, we deleted Rbpj on the Notch GOF background. These mice showed persistent spine abnormalities characterized by "butterfly" vertebrae suggesting that removal of Rbpj does not fully rescue the axial skeleton deformities caused by Notch GOF. However, Sox9 protein level was restored in Rbpj-deficient Notch GOF mice compared with Notch GOF mutants, demonstrating that regulation of Sox9 expression is canonical or Rbpj-dependent. To further understand the molecular basis of this regulation, we performed chromatin immunoprecipitation (ChIP) assays and detected the recruitment of the Rbpj/NICD transcription complex to Rbpj-binding sites upstream of the Sox9 promoter. The association of the Rbpj/NICD complex with the Sox9 promoter is associated with transcriptional repression of Sox9 in a cellular model of chondrocyte differentiation. Hence, Notch negatively regulates chondrocyte differentiation in the axial skeleton by suppressing Sox9 transcription, and Rbpj-independent Notch signaling mechanisms may also contribute to axial skeletogenesis.
منابع مشابه
Repressing of SOX6 and SOX9 in Situ Chondrogenic Differentiation of Rat Bone Marrow Stromal Cells
Introduction: SOX9 is a transcriptional activator which is necessary for chondrogenesis. SOX6 are closely related to DNA-binding proteins that critically enhance its function. Therefore, to carry out the growth plate chondrocyte differentiation program, SOX9 and SOX6 collaborate genomewide. Chondrocyte differentiation is also known to be promoted by glucocorticoids through unknown molecular mec...
متن کاملNotch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development.
The role of Notch signaling in cartilage differentiation and maturation in vivo was examined. Conditional Notch pathway gain and loss of function was achieved using a Cre/loxP approach to manipulate Notch signaling in cartilage precursors and chondrocytes of the developing mouse embryo. Conditional overexpression of activated Notch intracellular domain (NICD) in the chondrocyte lineage results ...
متن کاملHES factors regulate specific aspects of chondrogenesis and chondrocyte hypertrophy during cartilage development.
RBPjκ-dependent Notch signaling regulates multiple processes during cartilage development, including chondrogenesis, chondrocyte hypertrophy and cartilage matrix catabolism. Select members of the HES- and HEY-families of transcription factors are recognized Notch signaling targets that mediate specific aspects of Notch function during development. However, whether particular HES and HEY factors...
متن کاملInteractions between Sox9 and -catenin control chondrocyte differentiation
Chondrogenesis is a multistep process that is essential for endochondral bone formation. Previous results have indicated a role for -catenin and Wnt signaling in this pathway. Here we show the existence of physical and functional interactions between -catenin and Sox9, a transcription factor that is required in successive steps of chondrogenesis. In vivo, either overexpression of Sox9 or inacti...
متن کاملA Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation.
In the pancreas, Notch signaling is thought to prevent cell differentiation, thereby maintaining progenitors in an undifferentiated state. Here, we show that Notch renders progenitors competent to differentiate into ductal and endocrine cells by inducing activators of cell differentiation. Notch signaling promotes the expression of Sox9, which cell-autonomously activates the pro-endocrine gene ...
متن کامل